期刊论文

Lippiatt, N., Ling, T.C.*., Eggermont, S. (2019). Combining hydration and carbonation of cement using super-saturated aqueous CO2 solution. Construction and Building Materials, 229: 116825.
https://doi.org/10.1016/j.conbuildmat.2019.116825

Meng, Y.Z., Ling, T.C.*, Mo, K.H., Tian, W.H. (2019). Enhancement of high temperature performance of cement blocks via CO2 curing. Science of Total Environment, 671: 827-837.

https://doi.org/10.1016/j.scitotenv.2019.03.411

Shi, M.J.Ling, T.C.*, Gan, B.L., Guo, M.Z. (2019). Turning concrete waste powder into carbonated artificial aggregates. Construction and Building Materials, 199, 178-184.
https://doi.org/10.1016/j.conbuildmat.2018.12.021


Pan, S.Y.*, Ling, T.C., Park, A.H.A, Chiang, P.C.*. (2018). An overview: CO2 mineralization, reaction mechanism and modelling. Aerosol and Air Quality Research, 18: 829-848.
https://doi.org/10.4209/aaqr.2018.03.0093  

Shi, C.J.*, Wu, Z.M.*, Cao, Z.J., Ling, T.C., Zheng, J.L. (2018). Performance of mortar prepared with recycled concrete aggregate enhanced by CO2 and pozzolan slurry. Cement and Concrete Composites, 86: 130-138.
https://doi.org/10.1016/j.cemconcomp.2017.10.013


Kaliyavaradhan, S.K., Ling, T.C.* (2017). Potential of CO2 sequestration through construction and demolition (C&D) waste – An overview. Journal of CO2 Utilization, 20: 234-242.
https://doi.org/10.1016/j.jcou.2017.05.014


Yao, Z.*, Ling, T.C., Sarker, P.K., Su, W., Liu, J., Wu, W.* (2018). Recycling difficult-to-treat e-waste cathode-ray-tube glass as construction and building materials: A critical review. Renewable and Sustainable Energy Reviews, 81: 595-604.
https://doi.org/10.1016/j.rser.2017.08.027

 
Ling, T.C., Poon, C.S.* (2017). Spent fluorescent lamp glass as a substitute for fine aggregate in cement mortar. Journal of Cleaner Production, 161: 646-654.
https://doi.org/10.1016/j.jclepro.2017.05.173
 
Li, B., Ling, T.C.*, Qu, L.*, Wang Y. (2016). Effects of a two-step heating process on the properties of lightweight aggregate prepared with sewage sludge and saline clay. Construction and Building Materials, 114: 119-126.
https://doi.org/10.1016/j.conbuildmat.2016.03.159


Jiang, Y., Ling, T.C.*, Mo, K.H., Shi, C.J. (2019). A critical review of waste glass powder - Multiple roles of utilization in cement-based materials and construction products. Journal of Environmental Management, 242: 440-449.
https://doi.org/10.1016/j.jenvman.2019.04.098
 
Kaliyavaradhan, S.K., Ling, T.C.*, Mo, K.H. (2019). Waste resources recycling in controlled low-strength material (CLSM): A critical review on plastic properties. Journal of Environmental Management, 241: 383-396.
https://doi.org/10.1016/j.jenvman.2019.03.017
 
Li, B., Ling, T.C.*, Yu, J.G., Wu, J.Q. (2019). Cement pastes modified with recycled glass and supplementary cementitious materials: Properties at the ambient and high temperatures. Journal of Cleaner Production, 241: 118155.
https://doi.org/10.1016/j.jclepro.2019.118155
 
Yang, S.Q., Ling, T.C., Cui, H.Z., Poon, C.S.* (2019). Influence of particle size of glass aggregates on the high temperature properties of dry-mix concrete blocks. Construction and Building Materials, 209: 522-531.
https://doi.org/10.1016/j.conbuildmat.2019.03.131
 
Yang, S.Q., Poon, C.S.*, Ling, T.C. (2019) Distribution of ASR gel in conventional wet-mix glass mortars and mechanically produced dry-mix glass blocks. Construction and Building Materials, 229: 116916.

 https://doi.org/10.1016/j.conbuildmat.2019.116916

Ling, T.C.*, Balachandran, C., Munoz, J.F., Youtcheff J. (2018). Chemical evolution of alkali-silicate reaction (ASR) products: A Raman spectroscopic investigation. Materials and Structures, 51(1): 32.
https://doi.org/10.1617/s11527-018-1151-x 

Meng, Y.Z., Ling, T.C.*, Mo, K.H. (2018). Recycling of wastes for value-added applications in concrete blocks: An overview. Resources, Conservation and Recycling, 138: 298-312.
https://doi.org/10.1016/j.resconrec.2018.07.029

Wong, C.L., Mo, K.H.*, Yap, S.P., Alengaram, U.J., Ling, T.C. (2018). Potential use of brick waste as alternate concrete-making materials: A review. Journal of Cleaner Production, 195: 226-239.
https://doi.org/10.1016/j.jclepro.2018.05.193
 
Jiang, Y., Ling, T.C.*, Shi, C.J., Pan, S.Y. (2018). Characteristics of steel slags and their use in cement and concrete - A review. Resources, Conservation and Recycling, 136: 187-197. (ESI hot paper and highly cited paper)
 
https://doi.org/10.1016/j.resconrec.2018.04.023

Guo, H., Shi, C.J.*, Guan, X.M., Zhu, J.P., Ding, Y.H., Ling, T.-C., Zhang, H.B., Wang, Y.L. (2018). Durability of recycled aggregate concrete – A review.  Cement and Concrete Composites, 89: 251-259.
https://doi.org/10.1016/j.cemconcomp.2018.03.008 

Ong, S.K., Mo, K.H.*, Alengaram, U.J., Jumaat, M.Z., Ling, T.C. (2018). Valorization of wastes from power plant, steel-making and palm oil industries as partial sand substitute in concrete. Waste and Biomass Valorization, 9(9): 1645-1654.
https://doi.org/10.1007/s12649-017-9937-6
 
Ling, T.C.*, Qu, L.*, Yang, J., Guo, L. Mo, K.H. (2018). Autoclaved lime-saline soil products: Reactivity assessments and effects of quartz sand. ASCE Journal of Materials in Civil Engineering, 30(4): 04018055.
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002243
 
Ling, T.C., Mo, K.H.*, Qu, L.*, Yang, J., Guo, L. (2017). Mechanical strength and durability performance of autoclaved lime-saline soil bricks. Construction and Building Materials, 146: 403-409.
 https://doi.org/10.1016/j.conbuildmat.2017.04.106
 
Guo, M.-Z., Ling, T.C., Poon, C.S.* (2017). Photocatalytic NOx degradation of concrete surface layers intermixed and spray-coated with nano-TiO2: Influence of experimental factors. Cement and Concrete Composites, 83: 279-289.
https://doi.org/10.1016/j.cemconcomp.2017.07.022 

Lim, S. K., Tan C. S., Li, B.*Ling, T.C.*, Hossain, M. H., Poon, C. S. (2017). Utilizing high volumes quarry wastes in the production of lightweight foamed concrete. Construction and Building Materials, 151: 441-448.
https://doi.org/10.1016/j.conbuildmat.2017.06.091 

Ling, T.C.*, Kou, S.C., Poon, C.S.* (2016). Precast architectural tiles produced by double-layer casting method. Cement and Concrete Composites, 66: 73-81.
https://doi.org/10.1016/j.cemconcomp.2015.11.006


Drissi, S., Ling, T.C.*, Mo, K.H., Eddhahak, A. (2019). A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials. Renewable & Sustainable Energy Reviews, 110: 467-484.
https://doi.org/10.1016/j.rser.2019.04.072 

Drissi, S., Ling, T.C.*, Mo, K.H. (2019). Thermal efficiency and durability performances of paraffinic phase change materials with enhanced thermal conductivity–A review. Thermochimica Acta, 673: 198-210.
https://doi.org/10.1016/j.tca.2019.01.020 

Mo, K.H.*, Lee, H.J., Liu, M.Y.J., Ling, T.C.* (2018). Incorporation of expanded vermiculite lightweight aggregate in cement mortar. Construction and Building Materials, 179: 302-306.
https://doi.org/10.1016/j.conbuildmat.2018.05.219 

Ling, T.C., Kaliyavaradhan, S.K., Poon, C.S.* (2018). Global perspective on application of controlled low-strength material (CLSM) for trench backfilling - An overview. Construction and Building Materials, 158: 535-548. 
https://doi.org/10.1016/j.conbuildmat.2017.10.050 

Chen, B., Li, B.*, Gao, Y., Ling, T.C., Lu, Z., Li, Z. (2017). Investigation on electrically conductive aggregates produced by incorporating carbon fiber and carbon black. Construction and Building Materials, 144: 106-114.
https://doi.org/10.1016/j.conbuildmat.2017.03.168 

Mo, K.H.*, Ling, T.C., Alengaram, U.J., Yap, S.P., Yuen, C.W. (2017). Overview of supplementary cementitious materials usage in lightweight aggregate concrete. Construction and Building Materials, 139: 403-418.
 https://doi.org/10.1016/j.conbuildmat.2017.02.081

Pan, X.Y., Shi, Z.G., Shi, C.J.*, Ling, T.C., Li, N. (2017). A review on concrete surface treatment Part I: Types and mechanisms. Construction and Building Materials, 132: 578-590.
https://doi.org/10.1016/j.conbuildmat.2016.12.025 

Pan, X.Y., Shi, Z.G., Shi, C.J.*, Ling, T.C., Li, N. (2017). A review on surface treatment for concrete – Part 2: Performance. Construction and Building Materials, 133: 81-90.
https://doi.org/10.1016/j.conbuildmat.2016.11.128